Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study

نویسندگان

  • Vijay R Varma
  • Anup M Oommen
  • Sudhir Varma
  • Ramon Casanova
  • Yang An
  • Ryan M Andrews
  • Richard O'Brien
  • Olga Pletnikova
  • Juan C Troncoso
  • Jon Toledo
  • Rebecca Baillie
  • Matthias Arnold
  • Gabi Kastenmueller
  • Kwangsik Nho
  • P Murali Doraiswamy
  • Andrew J Saykin
  • Rima Kaddurah-Daouk
  • Cristina Legido-Quigley
  • Madhav Thambisetty
چکیده

BACKGROUND The metabolic basis of Alzheimer disease (AD) is poorly understood, and the relationships between systemic abnormalities in metabolism and AD pathogenesis are unclear. Understanding how global perturbations in metabolism are related to severity of AD neuropathology and the eventual expression of AD symptoms in at-risk individuals is critical to developing effective disease-modifying treatments. In this study, we undertook parallel metabolomics analyses in both the brain and blood to identify systemic correlates of neuropathology and their associations with prodromal and preclinical measures of AD progression. METHODS AND FINDINGS Quantitative and targeted metabolomics (Biocrates AbsoluteIDQ [identification and quantification] p180) assays were performed on brain tissue samples from the autopsy cohort of the Baltimore Longitudinal Study of Aging (BLSA) (N = 44, mean age = 81.33, % female = 36.36) from AD (N = 15), control (CN; N = 14), and "asymptomatic Alzheimer's disease" (ASYMAD, i.e., individuals with significant AD pathology but no cognitive impairment during life; N = 15) participants. Using machine-learning methods, we identified a panel of 26 metabolites from two main classes-sphingolipids and glycerophospholipids-that discriminated AD and CN samples with accuracy, sensitivity, and specificity of 83.33%, 86.67%, and 80%, respectively. We then assayed these 26 metabolites in serum samples from two well-characterized longitudinal cohorts representing prodromal (Alzheimer's Disease Neuroimaging Initiative [ADNI], N = 767, mean age = 75.19, % female = 42.63) and preclinical (BLSA) (N = 207, mean age = 78.68, % female = 42.63) AD, in which we tested their associations with magnetic resonance imaging (MRI) measures of AD-related brain atrophy, cerebrospinal fluid (CSF) biomarkers of AD pathology, risk of conversion to incident AD, and trajectories of cognitive performance. We developed an integrated blood and brain endophenotype score that summarized the relative importance of each metabolite to severity of AD pathology and disease progression (Endophenotype Association Score in Early Alzheimer's Disease [EASE-AD]). Finally, we mapped the main metabolite classes emerging from our analyses to key biological pathways implicated in AD pathogenesis. We found that distinct sphingolipid species including sphingomyelin (SM) with acyl residue sums C16:0, C18:1, and C16:1 (SM C16:0, SM C18:1, SM C16:1) and hydroxysphingomyelin with acyl residue sum C14:1 (SM (OH) C14:1) were consistently associated with severity of AD pathology at autopsy and AD progression across prodromal and preclinical stages. Higher log-transformed blood concentrations of all four sphingolipids in cognitively normal individuals were significantly associated with increased risk of future conversion to incident AD: SM C16:0 (hazard ratio [HR] = 4.430, 95% confidence interval [CI] = 1.703-11.520, p = 0.002), SM C16:1 (HR = 3.455, 95% CI = 1.516-7.873, p = 0.003), SM (OH) C14:1 (HR = 3.539, 95% CI = 1.373-9.122, p = 0.009), and SM C18:1 (HR = 2.255, 95% CI = 1.047-4.855, p = 0.038). The sphingolipid species identified map to several biologically relevant pathways implicated in AD, including tau phosphorylation, amyloid-β (Aβ) metabolism, calcium homeostasis, acetylcholine biosynthesis, and apoptosis. Our study has limitations: the relatively small number of brain tissue samples may have limited our power to detect significant associations, control for heterogeneity between groups, and replicate our findings in independent, autopsy-derived brain samples. CONCLUSIONS We present a novel framework to identify biologically relevant brain and blood metabolites associated with disease pathology and progression during the prodromal and preclinical stages of AD. Our results show that perturbations in sphingolipid metabolism are consistently associated with endophenotypes across preclinical and prodromal AD, as well as with AD pathology at autopsy. Sphingolipids may be biologically relevant biomarkers for the early detection of AD, and correcting perturbations in sphingolipid metabolism may be a plausible and novel therapeutic strategy in AD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Chronic Kidney Disease Patients via k-important Neighbors in High Dimensional Metabolomics Dataset

Background: Chronic kidney disease (CKD), characterized by progressive loss of renal function, is becoming a growing problem in the general population. New analytical technologies such as “omics”-based approaches, including metabolomics, provide a useful platform for biomarker discovery and improvement of CKD management. In metabolomics studies, not only prediction accuracy is ...

متن کامل

Serum-based metabolic alterations in patients with papillary thyroid carcinoma unveiled by non-targeted 1H-NMR metabolomics approach

Objective(s): As the most prevalent endocrine system malignancy, papillary thyroid carcinoma had a very fast rising incidence in recent years for unknown reasons besides the fact that the current methods in thyroid cancer diagnosis still hold some limitations. Therefore, the aim of this study was to improve the potential molecular markers for diagnosis of benign and malignant thyroid nodules to...

متن کامل

P189: The Role of Periodontitis in Alzheimer Pathogenesis

Alzheimer disease (AD), the most common cause of dementia, is an irreversible progressive neurodegenerative condition. It is characterized by the salient inflammatory features, microglial activation and increased levels of pro-inflammatory cytokines which contribute to the inflammatory states of the CNS. Accumulating data suggest the key role of inflammation in AD pathogenesis. In a prospective...

متن کامل

P 62: Markers of Neuroinflammation Related to Alzheimer\'s Disease Pathology in the Elderly

Alzheimer Disease (AD) is a neurodegenerative disorder and the most common form of dementia. Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. In vitro and animal studies have linked neuroinflammation to Alzheimer's disease (AD) pathology. Studies on marke...

متن کامل

Metabolomics in the Study of Alzheimer's Disease

With an increasing aging population, Alzheimer’s disease (AD) has become a social and economic problem to societies worldwide, affecting millions of people. However, pathophysiological events associated with AD are not well elucidated yet and current definitive diagnosis is only obtained after death through examination of brain tissue. In the last years, Metabolomics has been demonstrated to pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2018